Big Data Diario de Mallorca Fraude

Ciberdelincuencia: detección del fraude mediante análisis predictivo

Fran Muñoz - Pere Josep Pons | IT Travel

Cada día se realizan millones de transacciones con tarjetas de crédito, debido y otros sistemas electrónicos. De hecho, en España un 16% de las transacciones se realizan de forma electrónica [1]. Por lo tanto, la ciberdelincuencia ha centrado su foco en este lucrativo negocio y cada día están perfeccionando las técnicas de fraude tanto en los fraudes de tarjeta “presente” como en los que no lo está.

Pero, más allá de estos dos términos fácilmente entendibles, los expertos en ciberseguridad hablan de smishing, hacking o robo de identidad que suelen resultar extraños para el púbico en general y en IT Travel creemos que son clave para que los usuarios intercambien bienes y servicios de forma segura en la red. La definición de algunos de ellos son:

Clonación: duplicación de tarjetas de crédito.

Robo de identidad: suplantación de identidad.

Phishing: es un método que los ciberdelincuentes utilizan para engañarle y conseguir que revele información personal, como contraseñas o datos de tarjetas de crédito y de la seguridad social y números de cuentas bancarias.

Hacking: es el conjunto de técnicas a través de las cuales se accede a un sistema informático vulnerando las medidas de seguridad establecidas originariamente.

Smishing: es un nuevo tipo de delito o actividad criminal a base de técnicas de ingeniería social con mensajes de texto dirigidos a los usuarios de telefonía móvil. Se trata de una variante del phishing.

En este sentido, los fraudes más peligrosos son los que implican robo de identidad online y de los datos de la tarjeta. Por eso las instituciones públicas como el BCE y privadas como PayPal o Visa están realizando esfuerzos importantes para prevenir este tipo de fraudes.

En los últimos tiempos, en la lucha contra el fraude en las compras por internet se ha pasado de un sistema de reglas predefinidas a sistemas de detección de fraude basadas el uso del análisis predictivo vía implantación de herramientas de machine learning en los sistemas web.

Pero ¿cuál es la diferencia entre ellos?

• Un sistema de reglas predefinidas identifica los casos en base a una serie de variables predefinidas clasificados como “malos” (origen de la transacción, importe, producto, etc.) y literalmente corta las transacciones sin evaluar si es legítima o no facilitando que un buen hacker “aprenda” esas reglas genéricas y se aproveche de ellas.

• En cambio, un algoritmo de machine learning evalúa probabilísticamente una a una las transacciones en base a su experiencia y entrenamiento con casos reales y considera cada una de las particularidades de las transacciones antes de clasificarla como legítima o no. Además, se caracterizan por ser más “ligeras” y facilitar que la web cargue más rápido.

Imagen: esquema de Machine Learning | Fuente: Elaboración propia

Así, en IT Travel Services vemos las técnicas de machine learning como la incorporación del factor “humano”, aunque en este caso se trate de una “máquina”, al sistema de detección de fraude.

En este sentido, un sistema de machine learning se basa en diferentes técnicas estadísticas y la combinación de diversas fuentes de datos (origen de la transacción, importe, tipo de dispositivo, etc.) con el fin de que un algoritmo diseñado a la medida de cada negocio pueda clasificar automáticamente una transacción como fraudulenta o no y cortar su desarrollo antes de que se produzca el fraude.

No hace falta decir que la implementación de estos sistemas de machine learning permiten:

Aumentar la eficiencia en muchos otros departamentos de la organización por lo que aumenta la rentabilidad de la empresa.

Reducir el número de reclamaciones de clientes, en las que sus transacciones han sido clasificadas como fraudulentas por un sistema de reglas predefinidas, cuando en realidad no lo son.

[1] Consejo Económico y Social de España (2016). Informe Nuevos Hábitos de Consumo, Cambios Sociales y Tecnológicos.